Gibberellin-auxin interaction in pea stem elongation.
نویسندگان
چکیده
Joint application of gibberellic acid and indole-3-acetic acid to excised stem sections, terminal cuttings, and decapitated plants of a green dwarf pea results in a markedly synergistic growth response to these hormones. Synergism in green tall pea stem sections is comparatively small, although growth is kinetically indistinguishable from similarly treated dwarf sections.Gibberellin-induced growth does not appear to be mediated through its effect on auxin synthesis, since gibberellin pretreatment of dwarf cuttings fails to elicit an enhanced tryptophan-induced growth response of sections, whereas auxin-induced growth is strongly enhanced. Also, tryptophan-gibberellin synergism is not significant in sections and cuttings of green dwarf peas, while auxin-gibberellin synergism is.Administration of gibberellic acid prior to indole-3-acetic acid results in greatly increased growth. In reversed order, the application fails to produce any synergistic interaction. This indicates that gibberellin action must precede auxin action in growth regulation.
منابع مشابه
Effect of Ethylene and Gibberellic Acid on Auxin Synthesis in Plant Tissues " 2 Jack G . Valdovinos , Leland
Treatment of plant tissues with gibberellic acid leads to increased levels of auxin and stem elongation in several plant species (7,13). Pretreatment of plant tisstues with ethylene is known to decrease levels of diffusible auxin (5, 10, 20) as well as cell elongation (3, 4). Recent evidence has indicated that a significant influence of gibberellin on auxin levels and growth processes is ithrou...
متن کاملCrosstalk of arabinogalactan protein, auxin, gibberellin, and callose in Al-treated Tea seedlings
Arabinogalactan proteins (AGP) are a class of cell surface plant peptidoglycans which have been implicated in root elongation and signal transduction pathways. AGPs function not only as markers of cellular identity but also as signaling molecules, which might initiate signal transduction. Aluminum promotes the elongation of tea (Camellia sinensis L.) roots. Although some mechanisms by which Al ...
متن کاملHormone and seed-specific regulation of pea fruit growth.
Growth of young pea (Pisum sativum) fruit (pericarp) requires developing seeds or, in the absence of seeds, treatment with gibberellin (GA) or auxin (4-chloroindole-3-acetic acid). This study examined the role of seeds and hormones in the regulation of cell division and elongation in early pea fruit development. Profiling histone H2A and gamma-tonoplast intrinsic protein (TIP) gene expression d...
متن کاملHormone interactions and regulation of Unifoliata, PsPK2, PsPIN1 and LE gene expression in pea (Pisum sativum) shoot tips.
The Unifoliata (Uni) gene plays a major role in development of the compound leaf in pea, but its regulation is unknown. In this study, we examined the effects of plant hormones on the expression of Uni, PsPK2 (the gene for a pea homolog of Arabidopsis PID, a regulator of PIN1 targeting), PsPIN1 (the major gene for a putative auxin efflux carrier) and LE (a gibberellin biosynthesis gene, GA3ox),...
متن کاملHormonal interactions in the control of Arabidopsis hypocotyl elongation.
The Arabidopsis hypocotyl, together with hormone mutants and chemical inhibitors, was used to study the role of auxin in cell elongation and its possible interactions with ethylene and gibberellin. When wild-type Arabidopsis seedlings were grown on media containing a range of auxin concentrations, hypocotyl growth was inhibited. However, when axr1-12 and 35S-iaaL (which have reduced auxin respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 42 1 شماره
صفحات -
تاریخ انتشار 1967